Topic:Temporal Convolutional Networks
What is Temporal Convolutional Networks? Temporal convolutional networks (TCNs) are deep learning models that use 1D convolutions for sequence modeling tasks.
Papers and Code
Oct 08, 2025
Abstract:The escalating complexity of network threats and the inherent class imbalance in traffic data present formidable challenges for modern Intrusion Detection Systems (IDS). While Graph Neural Networks (GNNs) excel in modeling topological structures and Temporal Convolutional Networks (TCNs) are proficient in capturing time-series dependencies, a framework that synergistically integrates both while explicitly addressing data imbalance remains an open challenge. This paper introduces a novel deep learning framework, named Gated Temporal Convolutional Network and Graph (GTCN-G), engineered to overcome these limitations. Our model uniquely fuses a Gated TCN (G-TCN) for extracting hierarchical temporal features from network flows with a Graph Convolutional Network (GCN) designed to learn from the underlying graph structure. The core innovation lies in the integration of a residual learning mechanism, implemented via a Graph Attention Network (GAT). This mechanism preserves original feature information through residual connections, which is critical for mitigating the class imbalance problem and enhancing detection sensitivity for rare malicious activities (minority classes). We conducted extensive experiments on two public benchmark datasets, UNSW-NB15 and ToN-IoT, to validate our approach. The empirical results demonstrate that the proposed GTCN-G model achieves state-of-the-art performance, significantly outperforming existing baseline models in both binary and multi-class classification tasks.
* This preprint was submitted to IEEE TrustCom 2025. The accepted
version will be published under copyright 2025 IEEE
Via

Oct 08, 2025
Abstract:Accurate and real-time prediction of wireless channel conditions, particularly the Signal-to-Interference-plus-Noise Ratio (SINR), is a foundational requirement for enabling Ultra-Reliable Low-Latency Communication (URLLC) in highly dynamic Industry 4.0 environments. Traditional physics-based or statistical models fail to cope with the spatio-temporal complexities introduced by mobile obstacles and transient interference inherent to smart warehouses. To address this, we introduce Evo-WISVA (Evolutionary Wireless Infrastructure for Smart Warehouse using VAE), a novel synergistic deep learning architecture that functions as a lightweight 2D predictive digital twin of the radio environment. Evo-WISVA integrates a memory-augmented Variational Autoencoder (VAE) featuring an Attention-driven Latent Memory Module (LMM) for robust, context-aware spatial feature extraction, with a Convolutional Long Short-Term Memory (ConvLSTM) network for precise temporal forecasting and sequential refinement. The entire pipeline is optimized end-to-end via a joint loss function, ensuring optimal feature alignment between the generative and predictive components. Rigorous experimental evaluation conducted on a high-fidelity ns-3-generated industrial warehouse dataset demonstrates that Evo-WISVA significantly surpasses state-of-the-art baselines, achieving up to a 47.6\% reduction in average reconstruction error. Crucially, the model exhibits exceptional generalization capacity to unseen environments with vastly increased dynamic complexity (up to ten simultaneously moving obstacles) while maintaining amortized computational efficiency essential for real-time deployment. Evo-WISVA establishes a foundational technology for proactive wireless resource management, enabling autonomous optimization and advancing the realization of predictive digital twins in industrial communication networks.
Via

Oct 06, 2025
Abstract:Understanding the dynamic relationship between humans and the built environment is a key challenge in disciplines ranging from environmental psychology to reinforcement learning (RL). A central obstacle in modeling these interactions is the inability to capture human psychological states in a way that is both generalizable and privacy preserving. Traditional methods rely on theoretical models or questionnaires, which are limited in scope, static, and labor intensive. We present a kinesics recognition framework that infers the communicative functions of human activity -- known as kinesics -- directly from 3D skeleton joint data. Combining a spatial-temporal graph convolutional network (ST-GCN) with a convolutional neural network (CNN), the framework leverages transfer learning to bypass the need for manually defined mappings between physical actions and psychological categories. The approach preserves user anonymity while uncovering latent structures in bodily movements that reflect cognitive and emotional states. Our results on the Dyadic User EngagemenT (DUET) dataset demonstrate that this method enables scalable, accurate, and human-centered modeling of behavior, offering a new pathway for enhancing RL-driven simulations of human-environment interaction.
* The 15th International Workshop on Structural Health Monitoring
(IWSHM)
Via

Oct 01, 2025
Abstract:Intrusion Detection Systems (IDS) face persistent challenges due to evolving cyberattacks, high-dimensional traffic data, and severe class imbalance in benchmark datasets such as NSL-KDD. To address these issues, we propose IntrusionX, a hybrid deep learning framework that integrates Convolutional Neural Networks (CNNs) for local feature extraction and Long Short-Term Memory (LSTM) networks for temporal modeling. The architecture is further optimized using the Squirrel Search Algorithm (SSA), enabling effective hyperparameter tuning while maintaining computational efficiency. Our pipeline incorporates rigorous preprocessing, stratified data splitting, and dynamic class weighting to enhance the detection of rare classes. Experimental evaluation on NSL-KDD demonstrates that IntrusionX achieves 98% accuracy in binary classification and 87% in 5-class classification, with significant improvements in minority class recall (U2R: 71%, R2L: 93%). The novelty of IntrusionX lies in its reproducible, imbalance-aware design with metaheuristic optimization.
Via

Oct 01, 2025
Abstract:Event cameras offer advantages in object detection tasks due to high-speed response, low latency, and robustness to motion blur. However, event cameras lack texture and color information, making open-vocabulary detection particularly challenging. Current event-based detection methods are typically trained on predefined categories, limiting their ability to generalize to novel objects, where encountering previously unseen objects is common. Vision-language models (VLMs) have enabled open-vocabulary object detection in RGB images. However, the modality gap between images and event streams makes it ineffective to directly transfer CLIP to event data, as CLIP was not designed for event streams. To bridge this gap, we propose an event-image knowledge distillation framework that leverages CLIP's semantic understanding to achieve open-vocabulary object detection on event data. Instead of training CLIP directly on event streams, we use image frames as inputs to a teacher model, guiding the event-based student model to learn CLIP's rich visual representations. Through spatial attention-based distillation, the student network learns meaningful visual features directly from raw event inputs while inheriting CLIP's broad visual knowledge. Furthermore, to prevent information loss due to event data segmentation, we design a hybrid spiking neural network (SNN) and convolutional neural network (CNN) framework. Unlike fixed-group event segmentation methods, which often discard crucial temporal information, our SNN adaptively determines the optimal event segmentation moments, ensuring that key temporal features are extracted. The extracted event features are then processed by CNNs for object detection.
Via

Sep 18, 2025
Abstract:In time series forecasting, capturing recurrent temporal patterns is essential; decomposition techniques make such structure explicit and thereby improve predictive performance. Variational Mode Decomposition (VMD) is a powerful signal-processing method for periodicity-aware decomposition and has seen growing adoption in recent years. However, existing studies often suffer from information leakage and rely on inappropriate hyperparameter tuning. To address these issues, we propose VMDNet, a causality-preserving framework that (i) applies sample-wise VMD to avoid leakage; (ii) represents each decomposed mode with frequency-aware embeddings and decodes it using parallel temporal convolutional networks (TCNs), ensuring mode independence and efficient learning; and (iii) introduces a bilevel, Stackelberg-inspired optimisation to adaptively select VMD's two core hyperparameters: the number of modes (K) and the bandwidth penalty (alpha). Experiments on two energy-related datasets demonstrate that VMDNet achieves state-of-the-art results when periodicity is strong, showing clear advantages in capturing structured periodic patterns while remaining robust under weak periodicity.
* 5 pages, 1 figure, 2 tables
Via

Sep 17, 2025
Abstract:Autonomous aircraft must safely operate in untowered airspace, where coordination relies on voice-based communication among human pilots. Safe operation requires an aircraft to predict the intent, and corresponding goal location, of other aircraft. This paper introduces a multimodal framework for aircraft goal prediction that integrates natural language understanding with spatial reasoning to improve autonomous decision-making in such environments. We leverage automatic speech recognition and large language models to transcribe and interpret pilot radio calls, identify aircraft, and extract discrete intent labels. These intent labels are fused with observed trajectories to condition a temporal convolutional network and Gaussian mixture model for probabilistic goal prediction. Our method significantly reduces goal prediction error compared to baselines that rely solely on motion history, demonstrating that language-conditioned prediction increases prediction accuracy. Experiments on a real-world dataset from an untowered airport validate the approach and highlight its potential to enable socially aware, language-conditioned robotic motion planning.
* The last two authors advised equally. Submitted to the 2026 IEEE
International Conference on Robotics and Automation. 8 pages, 6 figures
Via

Sep 19, 2025
Abstract:Precise yield prediction is essential for agricultural sustainability and food security. However, climate change complicates accurate yield prediction by affecting major factors such as weather conditions, soil fertility, and farm management systems. Advances in technology have played an essential role in overcoming these challenges by leveraging satellite monitoring and data analysis for precise yield estimation. Current methods rely on spatio-temporal data for predicting crop yield, but they often struggle with multi-spectral data, which is crucial for evaluating crop health and growth patterns. To resolve this challenge, we propose a novel Multi-Temporal Multi-Spectral Yield Prediction Network, MTMS-YieldNet, that integrates spectral data with spatio-temporal information to effectively capture the correlations and dependencies between them. While existing methods that rely on pre-trained models trained on general visual data, MTMS-YieldNet utilizes contrastive learning for feature discrimination during pre-training, focusing on capturing spatial-spectral patterns and spatio-temporal dependencies from remote sensing data. Both quantitative and qualitative assessments highlight the excellence of the proposed MTMS-YieldNet over seven existing state-of-the-art methods. MTMS-YieldNet achieves MAPE scores of 0.336 on Sentinel-1, 0.353 on Landsat-8, and an outstanding 0.331 on Sentinel-2, demonstrating effective yield prediction performance across diverse climatic and seasonal conditions. The outstanding performance of MTMS-YieldNet improves yield predictions and provides valuable insights that can assist farmers in making better decisions, potentially improving crop yields.
* Published in Computers and Electronics in Agriculture
Via

Sep 09, 2025
Abstract:This study applies a range of forecasting techniques,including ARIMA, Prophet, Long Short Term Memory networks (LSTM), Temporal Convolutional Networks (TCN), and XGBoost, to model and predict Russian equipment losses during the ongoing war in Ukraine. Drawing on daily and monthly open-source intelligence (OSINT) data from WarSpotting, we aim to assess trends in attrition, evaluate model performance, and estimate future loss patterns through the end of 2025. Our findings show that deep learning models, particularly TCN and LSTM, produce stable and consistent forecasts, especially under conditions of high temporal granularity. By comparing different model architectures and input structures, this study highlights the importance of ensemble forecasting in conflict modeling, and the value of publicly available OSINT data in quantifying material degradation over time.
Via

Sep 10, 2025
Abstract:Isolated Sign Language Recognition (ISLR) is challenged by gestures that are morphologically similar yet semantically distinct, a problem rooted in the complex interplay between hand shape and motion trajectory. Existing methods, often relying on a single reference frame, struggle to resolve this geometric ambiguity. This paper introduces Dual-SignLanguageNet (DSLNet), a dual-reference, dual-stream architecture that decouples and models gesture morphology and trajectory in separate, complementary coordinate systems. Our approach utilizes a wrist-centric frame for view-invariant shape analysis and a facial-centric frame for context-aware trajectory modeling. These streams are processed by specialized networks-a topology-aware graph convolution for shape and a Finsler geometry-based encoder for trajectory-and are integrated via a geometry-driven optimal transport fusion mechanism. DSLNet sets a new state-of-the-art, achieving 93.70%, 89.97% and 99.79% accuracy on the challenging WLASL-100, WLASL-300 and LSA64 datasets, respectively, with significantly fewer parameters than competing models.
* 5 pages, 3 figures, ICASSP
Via
