Temporal Convolutional Networks


Temporal convolutional networks (TCNs) are deep learning models that use 1D convolutions for sequence modeling tasks.

Skeleton-based sign language recognition using a dual-stream spatio-temporal dynamic graph convolutional network

Add code
Sep 10, 2025
Viaarxiv icon

A Neuromorphic Incipient Slip Detection System using Papillae Morphology

Add code
Sep 11, 2025
Viaarxiv icon

Forecasting Russian Equipment Losses Using Time Series and Deep Learning Models

Add code
Sep 09, 2025
Viaarxiv icon

Grasp Like Humans: Learning Generalizable Multi-Fingered Grasping from Human Proprioceptive Sensorimotor Integration

Add code
Sep 10, 2025
Viaarxiv icon

FoundationalECGNet: A Lightweight Foundational Model for ECG-based Multitask Cardiac Analysis

Add code
Sep 10, 2025
Viaarxiv icon

IBN: An Interpretable Bidirectional-Modeling Network for Multivariate Time Series Forecasting with Variable Missing

Add code
Sep 09, 2025
Viaarxiv icon

A Hybrid CNN-LSTM Deep Learning Model for Intrusion Detection in Smart Grid

Add code
Sep 08, 2025
Viaarxiv icon

Detecting Blinks in Healthy and Parkinson's EEG: A Deep Learning Perspective

Add code
Sep 05, 2025
Viaarxiv icon

Lightweight DNN for Full-Band Speech Denoising on Mobile Devices: Exploiting Long and Short Temporal Patterns

Add code
Sep 05, 2025
Viaarxiv icon

MICACL: Multi-Instance Category-Aware Contrastive Learning for Long-Tailed Dynamic Facial Expression Recognition

Add code
Sep 04, 2025
Viaarxiv icon