Temporal convolutional networks (TCNs) are deep learning models that use 1D convolutions for sequence modeling tasks.
Video quality assessment (VQA) is vital for computer vision tasks, but existing approaches face major limitations: full-reference (FR) metrics require clean reference videos, and most no-reference (NR) models depend on training on costly human opinion labels. Moreover, most opinion-unaware NR methods are image-based, ignoring temporal context critical for video object detection. In this work, we present a scalable, streaming-based VQA model that is both no-reference and opinion-unaware. Our model leverages synthetic degradations of the DAVIS dataset, training a temporal-aware convolutional architecture to predict FR metrics (LPIPS , PSNR, SSIM) directly from degraded video, without references at inference. We show that our streaming approach outperforms our own image-based baseline by generalizing across diverse degradations, underscoring the value of temporal modeling for scalable VQA in real-world vision systems. Additionally, we demonstrate that our model achieves higher correlation with full-reference metrics compared to BRISQUE, a widely-used opinion-aware image quality assessment baseline, validating the effectiveness of our temporal, opinion-unaware approach.
Localisation tasks in biomedical data often require models to learn meaningful spatial or temporal relationships from signals with complex intensity distributions. A common strategy, exemplified by CoordConv layers, is to append coordinate channels to convolutional inputs, enabling networks to learn absolute positions. In this work, we propose a signal intensity-weighted coordinate representation that replaces the pure coordinate channels with channels scaled by local signal intensity. This modification embeds an intensity-position coupling directly in the input representation, introducing a simple and modality-agnostic inductive bias. We evaluate the approach on two distinct localisation problems: (i) predicting the time of morphological transition in 20-second, two-lead ECG signals, and (ii) regressing the coordinates of nuclear centres in cytological images from the SiPaKMeD dataset. In both cases, the proposed representation yields faster convergence and higher generalisation performance relative to conventional coordinate-channel approaches, demonstrating its effectiveness across both one-dimensional and two-dimensional biomedical signals.
This paper presents a lightweight three-dimensional convolutional neural network (3DCNN) for human activity recognition (HAR) using event-based vision data. Privacy preservation is a key challenge in human monitoring systems, as conventional frame-based cameras capture identifiable personal information. In contrast, event cameras record only changes in pixel intensity, providing an inherently privacy-preserving sensing modality. The proposed network effectively models both spatial and temporal dynamics while maintaining a compact design suitable for edge deployment. To address class imbalance and enhance generalization, focal loss with class reweighting and targeted data augmentation strategies are employed. The model is trained and evaluated on a composite dataset derived from the Toyota Smart Home and ETRI datasets. Experimental results demonstrate an F1-score of 0.9415 and an overall accuracy of 94.17%, outperforming benchmark 3D-CNN architectures such as C3D, ResNet3D, and MC3_18 by up to 3%. These results highlight the potential of event-based deep learning for developing accurate, efficient, and privacy-aware human action recognition systems suitable for real-world edge applications.
Accurate prediction of remaining useful life (RUL) is essential to enhance system reliability and reduce maintenance risk. Yet many strong contemporary models are fragile around fault onset and opaque to engineers: short, high-energy spikes are smoothed away or misread, fixed thresholds blunt sensitivity, and physics-based explanations are scarce. To remedy this, we introduce SARNet (Spike-Aware Consecutive Validation Framework), which builds on a Modern Temporal Convolutional Network (ModernTCN) and adds spike-aware detection to provide physics-informed interpretability. ModernTCN forecasts degradation-sensitive indicators; an adaptive consecutive threshold validates true spikes while suppressing noise. Failure-prone segments then receive targeted feature engineering (spectral slopes, statistical derivatives, energy ratios), and the final RUL is produced by a stacked RF--LGBM regressor. Across benchmark-ported datasets under an event-triggered protocol, SARNet consistently lowers error compared to recent baselines (RMSE 0.0365, MAE 0.0204) while remaining lightweight, robust, and easy to deploy.
Spike-based temporal messaging enables SNNs to efficiently process both purely temporal and spatio-temporal time-series or event-driven data. Combining SNNs with Gated Recurrent Units (GRUs), a variant of recurrent neural networks, gives rise to a robust framework for sequential data processing; however, traditional RNNs often lose local details when handling long sequences. Previous approaches, such as SpikGRU, fail to capture fine-grained local dependencies in event-based spatio-temporal data. In this paper, we introduce the Convolutional Spiking GRU (CS-GRU) cell, which leverages convolutional operations to preserve local structure and dependencies while integrating the temporal precision of spiking neurons with the efficient gating mechanisms of GRUs. This versatile architecture excels on both temporal datasets (NTIDIGITS, SHD) and spatio-temporal benchmarks (MNIST, DVSGesture, CIFAR10DVS). Our experiments show that CS-GRU outperforms state-of-the-art GRU variants by an average of 4.35%, achieving over 90% accuracy on sequential tasks and up to 99.31% on MNIST. It is worth noting that our solution achieves 69% higher efficiency compared to SpikGRU. The code is available at: https://github.com/YesmineAbdennadher/CS-GRU.
The emergence of extremely large-scale antenna arrays (ELAA) in millimeter-wave (mmWave) communications, particularly in high-mobility scenarios, highlights the importance of near-field beam prediction. Unlike the conventional far-field assumption, near-field beam prediction requires codebooks that jointly sample the angular and distance domains, which leads to a dramatic increase in pilot overhead. Moreover, unlike the far- field case where the optimal beam evolution is temporally smooth, the optimal near-field beam index exhibits abrupt and nonlinear dynamics due to its joint dependence on user angle and distance, posing significant challenges for temporal modeling. To address these challenges, we propose a novel Convolutional Neural Network-Generative Pre-trained Transformer 2 (CNN-GPT2) based near-field beam prediction framework. Specifically, an uplink pilot transmission strategy is designed to enable efficient channel probing through widebeam analog precoding and frequency-varying digital precoding. The received pilot signals are preprocessed and passed through a CNN-based feature extractor, followed by a GPT-2 model that captures temporal dependencies across multiple frames and directly predicts the near-field beam index in an end-to-end manner.
Radar-based human activity recognition (HAR) is attractive for unobtrusive and privacy-preserving monitoring, yet many CNN/RNN solutions remain too heavy for edge deployment, and even lightweight ViT/SSM variants often exceed practical compute and memory budgets. We introduce Neural-HAR, a dimension-gated CNN accelerator tailored for real-time radar HAR on resource-constrained platforms. At its core is GateCNN, a parameter-efficient Doppler-temporal network that (i) embeds Doppler vectors to emphasize frequency evolution over time and (ii) applies dual-path gated convolutions that modulate Doppler-aware content features with temporal gates, complemented by a residual path for stable training. On the University of Glasgow UoG2020 continuous radar dataset, GateCNN attains 86.4% accuracy with only 2.7k parameters and 0.28M FLOPs per inference, comparable to CNN-BiGRU at a fraction of the complexity. Our FPGA prototype on Xilinx Zynq-7000 Z-7007S reaches 107.5 $\mu$s latency and 15 mW dynamic power using LUT-based ROM and distributed RAM only (zero DSP/BRAM), demonstrating real-time, energy-efficient edge inference. Code and HLS conversion scripts are available at https://github.com/lab-emi/AIRHAR.
In drug-resistant epilepsy, presurgical evaluation of epilepsy can be considered. Magnetoencephalography (MEG) has been shown to be an effective exam to inform the localization of the epileptogenic zone through the localization of interictal epileptic spikes. Manual detection of these pathological biomarkers remains a fastidious and error-prone task due to the high dimensionality of MEG recordings, and interrater agreement has been reported to be only moderate. Current automated methods are unsuitable for clinical practice, either requiring extensively annotated data or lacking robustness on non-typical data. In this work, we demonstrate that deep learning models can be used for detecting interictal spikes in MEG recordings, even when only temporal and single-expert annotations are available, which represents real-world clinical practice. We propose two model architectures: a feature-based artificial neural network (ANN) and a convolutional neural network (CNN), trained on a database of 59 patients, and evaluated against a state-of-the-art model to classify short time windows of signal. In addition, we employ an interactive machine learning strategy to iteratively improve our data annotation quality using intermediary model outputs. Both proposed models outperform the state-of-the-art model (F1-scores: CNN=0.46, ANN=0.44) when tested on 10 holdout test patients. The interactive machine learning strategy demonstrates that our models are robust to noisy annotations. Overall, results highlight the robustness of models with simple architectures when analyzing complex and imperfectly annotated data. Our method of interactive machine learning offers great potential for faster data annotation, while our models represent useful and efficient tools for automated interictal spikes detection.
The escalating complexity of network threats and the inherent class imbalance in traffic data present formidable challenges for modern Intrusion Detection Systems (IDS). While Graph Neural Networks (GNNs) excel in modeling topological structures and Temporal Convolutional Networks (TCNs) are proficient in capturing time-series dependencies, a framework that synergistically integrates both while explicitly addressing data imbalance remains an open challenge. This paper introduces a novel deep learning framework, named Gated Temporal Convolutional Network and Graph (GTCN-G), engineered to overcome these limitations. Our model uniquely fuses a Gated TCN (G-TCN) for extracting hierarchical temporal features from network flows with a Graph Convolutional Network (GCN) designed to learn from the underlying graph structure. The core innovation lies in the integration of a residual learning mechanism, implemented via a Graph Attention Network (GAT). This mechanism preserves original feature information through residual connections, which is critical for mitigating the class imbalance problem and enhancing detection sensitivity for rare malicious activities (minority classes). We conducted extensive experiments on two public benchmark datasets, UNSW-NB15 and ToN-IoT, to validate our approach. The empirical results demonstrate that the proposed GTCN-G model achieves state-of-the-art performance, significantly outperforming existing baseline models in both binary and multi-class classification tasks.
Understanding the dynamic relationship between humans and the built environment is a key challenge in disciplines ranging from environmental psychology to reinforcement learning (RL). A central obstacle in modeling these interactions is the inability to capture human psychological states in a way that is both generalizable and privacy preserving. Traditional methods rely on theoretical models or questionnaires, which are limited in scope, static, and labor intensive. We present a kinesics recognition framework that infers the communicative functions of human activity -- known as kinesics -- directly from 3D skeleton joint data. Combining a spatial-temporal graph convolutional network (ST-GCN) with a convolutional neural network (CNN), the framework leverages transfer learning to bypass the need for manually defined mappings between physical actions and psychological categories. The approach preserves user anonymity while uncovering latent structures in bodily movements that reflect cognitive and emotional states. Our results on the Dyadic User EngagemenT (DUET) dataset demonstrate that this method enables scalable, accurate, and human-centered modeling of behavior, offering a new pathway for enhancing RL-driven simulations of human-environment interaction.