Topic:Temporal Convolutional Networks
What is Temporal Convolutional Networks? Temporal convolutional networks (TCNs) are deep learning models that use 1D convolutions for sequence modeling tasks.
Papers and Code
Mar 25, 2025
Abstract:Study Region: Goslar and G\"ottingen, Lower Saxony, Germany. Study Focus: In July 2017, the cities of Goslar and G\"ottingen experienced severe flood events characterized by short warning time of only 20 minutes, resulting in extensive regional flooding and significant damage. This highlights the critical need for a more reliable and timely flood forecasting system. This paper presents a comprehensive study on the impact of radar-based precipitation data on forecasting river water levels in Goslar. Additionally, the study examines how precipitation influences water level forecasts in G\"ottingen. The analysis integrates radar-derived spatiotemporal precipitation patterns with hydrological sensor data obtained from ground stations to evaluate the effectiveness of this approach in improving flood prediction capabilities. New Hydrological Insights for the Region: A key innovation in this paper is the use of residual-based modeling to address the non-linearity between precipitation images and water levels, leading to a Spatiotemporal Radar-based Precipitation Model with residuals (STRPMr). Unlike traditional hydrological models, our approach does not rely on upstream data, making it independent of additional hydrological inputs. This independence enhances its adaptability and allows for broader applicability in other regions with RADOLAN precipitation. The deep learning architecture integrates (2+1)D convolutional neural networks for spatial and temporal feature extraction with LSTM for timeseries forecasting. The results demonstrate the potential of the STRPMr for capturing extreme events and more accurate flood forecasting.
* 28 pages, 11 figures, 6 tables
Via

Mar 26, 2025
Abstract:Change detection is a key task in Earth observation applications. Recently, deep learning methods have demonstrated strong performance and widespread application. However, change detection faces data scarcity due to the labor-intensive process of accurately aligning remote sensing images of the same area, which limits the performance of deep learning algorithms. To address the data scarcity issue, we develop a fine-tuning strategy called the Semantic Change Network (SCN). We initially pre-train the model on single-temporal supervised tasks to acquire prior knowledge of instance feature extraction. The model then employs a shared-weight Siamese architecture and extended Temporal Fusion Module (TFM) to preserve this prior knowledge and is fine-tuned on change detection tasks. The learned semantics for identifying all instances is changed to focus on identifying only the changes. Meanwhile, we observe that the locations of changes between the two images are spatially identical, a concept we refer to as spatial consistency. We introduce this inductive bias through an attention map that is generated by large-kernel convolutions and applied to the features from both time points. This enhances the modeling of multi-scale changes and helps capture underlying relationships in change detection semantics. We develop a binary change detection model utilizing these two strategies. The model is validated against state-of-the-art methods on six datasets, surpassing all benchmark methods and achieving F1 scores of 92.87%, 86.43%, 68.95%, 97.62%, 84.58%, and 93.20% on the LEVIR-CD, LEVIR-CD+, S2Looking, CDD, SYSU-CD, and WHU-CD datasets, respectively.
Via

Mar 25, 2025
Abstract:Burst image super-resolution (BISR) aims to enhance the resolution of a keyframe by leveraging information from multiple low-resolution images captured in quick succession. In the deep learning era, BISR methods have evolved from fully convolutional networks to transformer-based architectures, which, despite their effectiveness, suffer from the quadratic complexity of self-attention. We see Mamba as the next natural step in the evolution of this field, offering a comparable global receptive field and selective information routing with only linear time complexity. In this work, we introduce BurstMamba, a Mamba-based architecture for BISR. Our approach decouples the task into two specialized branches: a spatial module for keyframe super-resolution and a temporal module for subpixel prior extraction, striking a balance between computational efficiency and burst information integration. To further enhance burst processing with Mamba, we propose two novel strategies: (i) optical flow-based serialization, which aligns burst sequences only during state updates to preserve subpixel details, and (ii) a wavelet-based reparameterization of the state-space update rules, prioritizing high-frequency features for improved burst-to-keyframe information passing. Our framework achieves SOTA performance on public benchmarks of SyntheticSR, RealBSR-RGB, and RealBSR-RAW.
Via

Mar 21, 2025
Abstract:Denial-of-Service (DoS) attacks remain a critical threat to network security, disrupting services and causing significant economic losses. Traditional detection methods, including statistical and rule-based models, struggle to adapt to evolving attack patterns. To address this challenge, we propose a novel Temporal-Spatial Attention Network (TSAN) architecture for detecting Denial of Service (DoS) attacks in network traffic. By leveraging both temporal and spatial features of network traffic, our approach captures complex traffic patterns and anomalies that traditional methods might miss. The TSAN model incorporates transformer-based temporal encoding, convolutional spatial encoding, and a cross-attention mechanism to fuse these complementary feature spaces. Additionally, we employ multi-task learning with auxiliary tasks to enhance the model's robustness. Experimental results on the NSL-KDD dataset demonstrate that TSAN outperforms state-of-the-art models, achieving superior accuracy, precision, recall, and F1-score while maintaining computational efficiency for real-time deployment. The proposed architecture offers an optimal balance between detection accuracy and computational overhead, making it highly suitable for real-world network security applications.
* 19 Pages, 5 figures
Via

Mar 20, 2025
Abstract:This work introduces GazeSCRNN, a novel spiking convolutional recurrent neural network designed for event-based near-eye gaze tracking. Leveraging the high temporal resolution, energy efficiency, and compatibility of Dynamic Vision Sensor (DVS) cameras with event-based systems, GazeSCRNN uses a spiking neural network (SNN) to address the limitations of traditional gaze-tracking systems in capturing dynamic movements. The proposed model processes event streams from DVS cameras using Adaptive Leaky-Integrate-and-Fire (ALIF) neurons and a hybrid architecture optimized for spatio-temporal data. Extensive evaluations on the EV-Eye dataset demonstrate the model's accuracy in predicting gaze vectors. In addition, we conducted ablation studies to reveal the importance of the ALIF neurons, dynamic event framing, and training techniques, such as Forward-Propagation-Through-Time, in enhancing overall system performance. The most accurate model achieved a Mean Angle Error (MAE) of 6.034{\deg} and a Mean Pupil Error (MPE) of 2.094 mm. Consequently, this work is pioneering in demonstrating the feasibility of using SNNs for event-based gaze tracking, while shedding light on critical challenges and opportunities for further improvement.
Via

Mar 18, 2025
Abstract:Graph Neural Networks have significantly advanced research in recommender systems over the past few years. These methods typically capture global interests using aggregated past interactions and rely on static embeddings of users and items over extended periods of time. While effective in some domains, these methods fall short in many real-world scenarios, especially in finance, where user interests and item popularity evolve rapidly over time. To address these challenges, we introduce a novel extension to Light Graph Convolutional Network (LightGCN) designed to learn temporal node embeddings that capture dynamic interests. Our approach employs causal convolution to maintain a forward-looking model architecture. By preserving the chronological order of user-item interactions and introducing a dynamic update mechanism for embeddings through a sliding window, the proposed model generates well-timed and contextually relevant recommendations. Extensive experiments on a real-world dataset from BNP Paribas demonstrate that our approach significantly enhances the performance of LightGCN while maintaining the simplicity and efficiency of its architecture. Our findings provide new insights into designing graph-based recommender systems in time-sensitive applications, particularly for financial product recommendations.
* 8 pages, published in the international conference for AI in Finance
(ACM ICAIF'24)
Via

Mar 21, 2025
Abstract:This paper explores the promising interplay between spiking neural networks (SNNs) and event-based cameras for privacy-preserving human action recognition (HAR). The unique feature of event cameras in capturing only the outlines of motion, combined with SNNs' proficiency in processing spatiotemporal data through spikes, establishes a highly synergistic compatibility for event-based HAR. Previous studies, however, have been limited by SNNs' ability to process long-term temporal information, essential for precise HAR. In this paper, we introduce two novel frameworks to address this: temporal segment-based SNN (\textit{TS-SNN}) and 3D convolutional SNN (\textit{3D-SNN}). The \textit{TS-SNN} extracts long-term temporal information by dividing actions into shorter segments, while the \textit{3D-SNN} replaces 2D spatial elements with 3D components to facilitate the transmission of temporal information. To promote further research in event-based HAR, we create a dataset, \textit{FallingDetection-CeleX}, collected using the high-resolution CeleX-V event camera $(1280 \times 800)$, comprising 7 distinct actions. Extensive experimental results show that our proposed frameworks surpass state-of-the-art SNN methods on our newly collected dataset and three other neuromorphic datasets, showcasing their effectiveness in handling long-range temporal information for event-based HAR.
Via

Mar 20, 2025
Abstract:As millimeter-wave (mmWave) multiple-input multiple-output (MIMO) systems continue to incorporate larger antenna arrays, the range of near-field propagation expands, making it more likely for users close to the transmitter to fall within the near-field regime. Traditional far-field beam training methods are no longer effective in this context. Additionally, near-field beam training presents challenges, since the training codebook must account for both angular and distance dimensions, leading to large codebook sizes. To reduce the in-band training overhead, we propose the Sub-6G Channel-Aided Near-field BEam SelecTion (SCAN-BEST) framework, which is motivated by the spatial-temporal congruence between sub-6 GHz (sub-6G) and mmWave channels. SCAN-BEST utilizes preprocessed sub-6G channel estimates as input, and employs a convolutional neural network (CNN) to predict the probability of each beam being optimal within the near-field beam training codebook. Given the prediction uncertainty arising from the variance between sub-6G and mmWave channels, we introduce a conformal risk control (CRC)-based module that generates a set of beam candidates for further limited in-band training, enabling the final beam selection to formally meet user-defined target coverage rate. Numerical results confirm the thereoretical properties of SCAN-BEST in terms of the achieved coverage rate of the beam candidates and various metrics. Moreover, SCAN-BEST enjoys good scalability and robustness to various sub-6G system configurations, including to the sizes of calibration datasets.
* 13 pages, 11 figures
Via

Mar 17, 2025
Abstract:Gait disorder recognition plays a crucial role in the early diagnosis and monitoring of movement disorders. Existing approaches, including spatio-temporal graph convolutional networks (ST-GCNs), often face high memory demands and struggle to capture complex spatio-temporal dependencies, limiting their efficiency in clinical applications. To address these challenges, we introduce DynSTG-Mamba (Dynamic Spatio-Temporal Graph Mamba), a novel framework that combines DF-STGNN and STG-Mamba to enhance motion sequence modeling. The DF-STGNN incorporates a dynamic spatio-temporal filter that adaptively adjusts spatial connections between skeletal joints and temporal interactions across different movement phases. This approach ensures better feature propagation through dynamic graph structures by considering the hierarchical nature and dynamics of skeletal gait data. Meanwhile, STG-Mamba, an extension of Mamba adapted for skeletal motion data, ensures a continuous propagation of states, facilitating the capture of long-term dependencies while reducing computational complexity. To reduce the number of model parameters and computational costs while maintaining consistency, we propose Cross-Graph Relational Knowledge Distillation, a novel knowledge transfer mechanism that aligns relational information between teacher (large architecture) and student models (small architecture) while using shared memory. This ensures that the interactions and movement patterns of the joints are accurately preserved in the motion sequences. We validate our DynSTG-Mamba on KOA-NM, PD-WALK, and ATAXIA datasets, where it outperforms state-of-the-art approaches by achieving in terms of Accuracy, F1-score, and Recall. Our results highlight the efficiency and robustness of our approach, offering a lightweight yet highly accurate solution for automated gait analysis and movement disorder assessment.
Via

Mar 18, 2025
Abstract:Video object detection has made significant progress in recent years thanks to convolutional neural networks (CNNs) and vision transformers (ViTs). Typically, CNNs excel at capturing local features but struggle to model global representations. Conversely, ViTs are adept at capturing long-range global features but face challenges in representing local feature details. Off-the-shelf video object detection methods solely rely on CNNs or ViTs to conduct feature aggregation, which hampers their capability to simultaneously leverage global and local information, thereby resulting in limited detection performance. In this paper, we propose a Transformer-GraphFormer Blender Network (TGBFormer) for video object detection, with three key technical improvements to fully exploit the advantages of transformers and graph convolutional networks while compensating for their limitations. First, we develop a spatial-temporal transformer module to aggregate global contextual information, constituting global representations with long-range feature dependencies. Second, we introduce a spatial-temporal GraphFormer module that utilizes local spatial and temporal relationships to aggregate features, generating new local representations that are complementary to the transformer outputs. Third, we design a global-local feature blender module to adaptively couple transformer-based global representations and GraphFormer-based local representations. Extensive experiments demonstrate that our TGBFormer establishes new state-of-the-art results on the ImageNet VID dataset. Particularly, our TGBFormer achieves 86.5% mAP while running at around 41.0 FPS on a single Tesla A100 GPU.
* Accepted by AAAI2025
Via
