Topic:Temporal Convolutional Networks
What is Temporal Convolutional Networks? Temporal convolutional networks (TCNs) are deep learning models that use 1D convolutions for sequence modeling tasks.
Papers and Code
Apr 22, 2025
Abstract:A dynamic graph (DG) is frequently encountered in numerous real-world scenarios. Consequently, A dynamic graph convolutional network (DGCN) has been successfully applied to perform precise representation learning on a DG. However, conventional DGCNs typically consist of a static GCN coupled with a sequence neural network (SNN) to model spatial and temporal patterns separately. This decoupled modeling mechanism inherently disrupts the intricate spatio-temporal dependencies. To address the issue, this study proposes a novel Tensorized Lightweight Graph Convolutional Network (TLGCN) for accurate dynamic graph learning. It mainly contains the following two key concepts: a) designing a novel spatio-temporal information propagation method for joint propagation of spatio-temporal information based on the tensor M-product framework; b) proposing a tensorized lightweight graph convolutional network based on the above method, which significantly reduces the memory occupation of the model by omitting complex feature transformation and nonlinear activation. Numerical experiments on four real-world datasets demonstrate that the proposed TLGCN outperforms the state-of-the-art models in the weight estimation task on DGs.
Via

Apr 22, 2025
Abstract:As a fundamental challenge in visual computing, video super-resolution (VSR) focuses on reconstructing highdefinition video sequences from their degraded lowresolution counterparts. While deep convolutional neural networks have demonstrated state-of-the-art performance in spatial-temporal super-resolution tasks, their computationally intensive nature poses significant deployment challenges for resource-constrained edge devices, particularly in real-time mobile video processing scenarios where power efficiency and latency constraints coexist. In this work, we propose a Reparameterizable Architecture for High Fidelity Video Super Resolution method, named RepNet-VSR, for real-time 4x video super-resolution. On the REDS validation set, the proposed model achieves 27.79 dB PSNR when processing 180p to 720p frames in 103 ms per 10 frames on a MediaTek Dimensity NPU. The competition results demonstrate an excellent balance between restoration quality and deployment efficiency. The proposed method scores higher than the previous champion algorithm of MAI video super-resolution challenge.
* Champion Solution for CVPR 2025 MAI VSR Track
Via

Apr 19, 2025
Abstract:Millimeter-wave (mmWave) massive Multiple Input Multiple Output (MIMO) systems encounter both spatial wideband spreading and temporal wideband effects in the communication channels of individual users. Accurate estimation of a user's channel signature -- specifically, the direction of arrival and time of arrival -- is crucial for designing efficient beamforming transceivers, especially under noisy observations. In this work, we propose an Artificial Intelligence (AI)-enabled framework for estimating the channel signature of a user's location in mmWave massive MIMO systems. Our approach explicitly accounts for spatial wideband spreading, finite basis leakage effects, and significant unknown receiver noise. We demonstrate the effectiveness of a denoising convolutional neural network with residual learning for recovering channel responses, even when channel gains are of extremely low amplitude and embedded in ultra-high receiver noise environments. Notably, our method successfully recovers spatio-temporal diversity branches at signal-to-noise ratios as low as -20 dB. Furthermore, we introduce a local gravitation-based clustering algorithm to infer the number of physical propagation paths (unknown a priori) and to identify their respective support in the delay-angle domain of the denoised response. To complement our approach, we design tailored metrics for evaluating denoising and clustering performance within the context of wireless communications. We validate our framework through system-level simulations using Orthogonal Frequency Division Multiplexing (OFDM) with a Quadrature Phase Shift Keying (QPSK) modulation scheme over mmWave fading channels, highlighting the necessity and robustness of the proposed methods in ultra-low SNR scenarios.
* 13 pages, 19 figures, 4tables
Via

Apr 18, 2025
Abstract:Aiming at the problems of low accuracy and large error fluctuation of traditional traffic flow predictionmodels when dealing with multi-scale temporal features and dynamic change patterns. this paperproposes a multi-scale time series information modelling model MSTIM based on the Mindspore framework, which integrates long and short-term memory networks (LSTMs), convolutional neural networks (CNN), and the attention mechanism to improve the modelling accuracy and stability. The Metropolitan Interstate Traffic Volume (MITV) dataset was used for the experiments and compared and analysed with typical LSTM-attention models, CNN-attention models and LSTM-CNN models. The experimental results show that the MSTIM model achieves better results in the metrics of Mean Absolute Error (MAE), Mean Square Error (MSE), and Root Mean Square Error (RMSE), which significantly improves the accuracy and stability of the traffic volume prediction.
Via

Apr 17, 2025
Abstract:Fetal health monitoring through one-dimensional Doppler ultrasound (DUS) signals offers a cost-effective and accessible approach that is increasingly gaining interest. Despite its potential, the development of machine learning based techniques to assess the health condition of mothers and fetuses using DUS signals remains limited. This scarcity is primarily due to the lack of extensive DUS datasets with a reliable reference for interpretation and data imbalance across different gestational ages. In response, we introduce a novel autoregressive generative model designed to map fetal electrocardiogram (FECG) signals to corresponding DUS waveforms (Auto-FEDUS). By leveraging a neural temporal network based on dilated causal convolutions that operate directly on the waveform level, the model effectively captures both short and long-range dependencies within the signals, preserving the integrity of generated data. Cross-subject experiments demonstrate that Auto-FEDUS outperforms conventional generative architectures across both time and frequency domain evaluations, producing DUS signals that closely resemble the morphology of their real counterparts. The realism of these synthesized signals was further gauged using a quality assessment model, which classified all as good quality, and a heart rate estimation model, which produced comparable results for generated and real data, with a Bland-Altman limit of 4.5 beats per minute. This advancement offers a promising solution for mitigating limited data availability and enhancing the training of DUS-based fetal models, making them more effective and generalizable.
* AAAI 2025 Workshop on Large Language Models and Generative AI for
Health
Via

Apr 17, 2025
Abstract:Drivers' perception of risk determines their acceptance, trust, and use of the Automated Driving Systems (ADSs). However, perceived risk is subjective and difficult to evaluate using existing methods. To address this issue, a driver's subjective perceived risk (DSPR) model is proposed, regarding perceived risk as a dynamically triggered mechanism with anisotropy and attenuation. 20 participants are recruited for a driver-in-the-loop experiment to report their real-time subjective risk ratings (SRRs) when experiencing various automatic driving scenarios. A convolutional neural network and bidirectional long short-term memory network with temporal pattern attention (CNN-Bi-LSTM-TPA) is embedded into a semi-supervised learning strategy to predict SRRs, aiming to reduce data noise caused by subjective randomness of participants. The results illustrate that DSPR achieves the highest prediction accuracy of 87.91% in predicting SRRs, compared to three state-of-the-art risk models. The semi-supervised strategy improves accuracy by 20.12%. Besides, CNN-Bi-LSTM-TPA network presents the highest accuracy among four different LSTM structures. This study offers an effective method for assessing driver's perceived risk, providing support for the safety enhancement of ADS and driver's trust improvement.
* 6pages, 8figures, 5tables. Accepted to be presented at the 2025 36th
IEEE Intelligent Vehicles Symposium (IV) (IV 2025)
Via

Apr 14, 2025
Abstract:Overweight and obesity have emerged as widespread societal challenges, frequently linked to unhealthy eating patterns. A promising approach to enhance dietary monitoring in everyday life involves automated detection of food intake gestures. This study introduces a skeleton based approach using a model that combines a dilated spatial-temporal graph convolutional network (ST-GCN) with a bidirectional long-short-term memory (BiLSTM) framework, as called ST-GCN-BiLSTM, to detect intake gestures. The skeleton-based method provides key benefits, including environmental robustness, reduced data dependency, and enhanced privacy preservation. Two datasets were employed for model validation. The OREBA dataset, which consists of laboratory-recorded videos, achieved segmental F1-scores of 86.18% and 74.84% for identifying eating and drinking gestures. Additionally, a self-collected dataset using smartphone recordings in more adaptable experimental conditions was evaluated with the model trained on OREBA, yielding F1-scores of 85.40% and 67.80% for detecting eating and drinking gestures. The results not only confirm the feasibility of utilizing skeleton data for intake gesture detection but also highlight the robustness of the proposed approach in cross-dataset validation.
* The manuscript has been accepted in 47th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (IEEE EMBC
2025)
Via

Apr 15, 2025
Abstract:Predicting personality traits automatically has become a challenging problem in computer vision. This paper introduces an innovative multimodal feature learning framework for personality analysis in short video clips. For visual processing, we construct a facial graph and design a Geo-based two-stream network incorporating an attention mechanism, leveraging both Graph Convolutional Networks (GCN) and Convolutional Neural Networks (CNN) to capture static facial expressions. Additionally, ResNet18 and VGGFace networks are employed to extract global scene and facial appearance features at the frame level. To capture dynamic temporal information, we integrate a BiGRU with a temporal attention module for extracting salient frame representations. To enhance the model's robustness, we incorporate the VGGish CNN for audio-based features and XLM-Roberta for text-based features. Finally, a multimodal channel attention mechanism is introduced to integrate different modalities, and a Multi-Layer Perceptron (MLP) regression model is used to predict personality traits. Experimental results confirm that our proposed framework surpasses existing state-of-the-art approaches in performance.
Via

Apr 11, 2025
Abstract:Automatic Modulation Recognition (AMR) is an essential part of Intelligent Transportation System (ITS) dynamic spectrum allocation. However, current deep learning-based AMR (DL-AMR) methods are challenged to extract discriminative and robust features at low signal-to-noise ratios (SNRs), where the representation of modulation symbols is highly interfered by noise. Furthermore, current research on GNN methods for AMR tasks generally suffers from issues related to graph structure construction and computational complexity. In this paper, we propose a Spatial-Temporal-Frequency Graph Convolution Network (STF-GCN) framework, with the temporal domain as the anchor point, to fuse spatial and frequency domain features embedded in the graph structure nodes. On this basis, an adaptive correlation-based adjacency matrix construction method is proposed, which significantly enhances the graph structure's capacity to aggregate local information into individual nodes. In addition, a PoolGAT layer is proposed to coarsen and compress the global key features of the graph, significantly reducing the computational complexity. The results of the experiments confirm that STF-GCN is able to achieve recognition performance far beyond the state-of-the-art DL-AMR algorithms, with overall accuracies of 64.35%, 66.04% and 70.95% on the RML2016.10a, RML2016.10b and RML22 datasets, respectively. Furthermore, the average recognition accuracies under low SNR conditions from -14dB to 0dB outperform the state-of-the-art (SOTA) models by 1.20%, 1.95% and 1.83%, respectively.
Via

Apr 10, 2025
Abstract:Traffic data exhibits complex temporal, spatial, and spatial-temporal correlations. Most of models use either independent modules to separately extract temporal and spatial correlations or joint modules to synchronously extract them, without considering the spatial-temporal correlations. Moreover, models that consider joint spatial-temporal correlations (temporal, spatial, and spatial-temporal correlations) often encounter significant challenges in accuracy and computational efficiency which prevent such models from demonstrating the expected advantages of a joint spatial-temporal correlations architecture. To address these issues, this paper proposes an efficient pure convolutional network for traffic prediction via spatial-temporal encoding and inferring (STEI-PCN). The model introduces and designs a dynamic adjacency matrix inferring module based on absolute spatial and temporal coordinates, as well as relative spatial and temporal distance encoding, using a graph convolutional network combined with gating mechanism to capture local synchronous joint spatial-temporal correlations. Additionally, three layers of temporal dilated causal convolutional network are used to capture long-range temporal correlations. Finally, through multi-view collaborative prediction module, the model integrates the gated-activated original, local synchronous joint spatial-temporal, and long-range temporal features to achieve comprehensive prediction. This study conducts extensive experiments on flow datasets (PeMS03/04/07/08) and speed dataset (PeMS-Bay), covering multiple prediction horizons. The results show that STEI-PCN demonstrates competitive computational efficiency in both training and inference speeds, and achieves superior or slightly inferior to state-of-the-art (SOTA) models on most evaluation metrics.
Via
